Geometry and Distribution of Channel and Coal in Walloon Coal Measures, Surat Basin, Australia

INTRODUCTION

Understanding the geometry, distribution and controls on thick coal is fundamental to understanding coal seam gas reservoirs. In the Jurassic Walloon Subgroup coal measures, the spatial continuity of the coal seams is highly variable and often difficult to map and predict even with closely spaced (<1000 m) drilling. As a result, stochastic models have been built to simulate reservoir geometries of coals and their interburden lithologies within a continental system of fluvial channels, floodplains and lakes and mires.

This study examines the statistical distribution of coal plies and channels at a basin and local scale, to determine whether a predictive pattern can be developed for the stratigraphic subdivisions and basin location relative to interpreted higher and lower accommodation settings reflecting the underlying basement proximity, syndepositional faulting and differential compaction.

STUDY AREA, DATA AND STRATIGRAPHY

Fig. 1. (a) Locations of the Walloon Subgroup, boreholes with/without well markers and logging data, five local model areas, and 83 coal resources areas (DNRM, 2016). (b) Locations of the Study area, Surat Basin, Bowen Basin and Clarence Moreton Basin in Australia.

RESULTS

Fig. 2. Cumulative coal thickness per borehole overlain on an isochore map of Walloon Coal Measures unit thickness. The main structural fold is as well as the outline of the underlying Bowen Basin are also shown. Top right inset figure showing a vertical section of Basement, Bowen and Surat Basins.

Fig. 4. Example of well logs analysis at the well Lauren 58.

Fig. 5. Distribution of total coal ply number for the WCM.

CONCLUSIONS

- The cumulative coal thickness and coal plies number is highest along the eastern margin of the basin.
- Greater number of thick coal plies is closer to greater number of PC and CH but they are not overlaid each other.
- This observation appears consistent with the sequence stratigraphic model of thicker coal plies forming in times of relatively slow base level rise.

ACKNOWLEDGEMENTS

We thank Renate Silwa and the Office of Groundwater Impact Assessment for provision of formation tops and a normalised wireline data set. We acknowledge all the coal seam gas companies who provide data to the DNRM, Centre for Coal Seam Gas for the support, and Schlumberger for providing the licenses of Petrel.