Influence of elastoplastic embedment on CSG production enhancement using graded particle injection

Zhenjiang You\(^1\) [z.you@uq.edu.au], Duo Wang\(^1\), Christopher Leonardi\(^1\), Raymond Johnson Jr\(^1\), Pavel Bedrikovetsky\(^2\)

\(^1\)The University of Queensland, School of Chemical Engineering \(^2\)The University of Adelaide, School of Petroleum

Introduction

Negative responses in well productivity related to production / drawdown has been observed in the Bowen and Surat basins.

Graded particle injection (GPI), which uses staged injection of microscale particles coupled with improved modelling of hydraulic fracturing treatments, can improve post-fracturing results in low-permeability coal intervals.

Methodology

Elastoplastic finite element model (FEM): Predicts the embedment and surface deformation under a range of packing densities, closure stress and material properties.

Lattice Boltzmann method (LBM): Simulates the fluid flow within fractures and calculates fracture permeability with particle embedment.

Mathematical model for axisymmetric flow: Predicts the pressure profile, permeability distribution and well productivity index (PI).

Particle embedment and permeability reduction modelling

Fracture surface deformation with coal and particle shown in red and flow region in blue

Well productivity analysis

Permeability profiles for different injection pressures

Productivity index versus stimulation radius for different injection pressures

Conclusions

1. Compared to elastic deformation of the coal fracture surface, elastoplastic deformation results in reduced fracture width and decreased fracture permeability.

2. Fracture permeability tends to zero at a very dense or a loose particle packing in coal fractures. An optimal value of particle aspect ratio yields the maximum permeability for each effective stress value.

3. Elastoplastic embedment leads to lower permeability enhancement, larger pressure drawdown and smaller production improvement, as compared to elastic embedment modelling results.

Acknowledgements

This research has been conducted with the support of The University of Queensland Centre for Coal Seam Gas (UQ-CCSG), National Energy Resources Australia (NERA) and industry members: Santos, APLNG and Arrow Energy.

References

1. Fraser, S.A., and Johnson, R.L., Jr., 2018—Impact of Laboratory Testing Variability in Fracture Conductivity for Stimulation Effectiveness in Permian Deep Coal Source Rocks, Cooper Basin, South Australia. SPE Asia Pacific Oil and Gas Conference and Exhibition, Brisbane, Australia, SPE-191883.
